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I Introduction

Lagrangian and Hamiltonian formulations of dynamics have had such
an impact on physics that the slightest light shed on these formalisms
and their applications can be of great interest. In the study of fluids
much work has been done since the introduction of Lagrangian and Clebsch
[]:] variables for the purpose of obtaining Hamiltonian formulationms.
Usually a canonical Hamiltonian is derived from a standard Lagrangian
formulation (see, for example, Goldstein[?:l), and canonical Poisson
brackets can then be defined from the canonical Hamiltonian equations.
Unfortunately, the canonical variables sometimes turn out to be arti-
ficial (potentials) and do not correspond to the desired physical re-
presentation. This can be overcome by using non-canonical transforma-
tions as in Ref. [3]5 which allow non-canonical Poisson brackets to be
defined in physical variables (see also an example from Clebsch in Ref.

[}:I for discrete systems).

The purpose of this contribution is to deal with the question of
defining Poisson brackets directly in the desired variables independently
of the fact whether or how they are related to some canonical variables.
Poisson brackets of this type are called here Generalized Poisson Brackets
(GPB) according to the nomenclature of Sudarshan and Mukunda 2 . This
reference deals essentially with the discrete case and contains very
interesting material, which is presented here in connection with the con-
tinuous case, so that we begin with GPB of discrete systems. GPB of con-
tinuous systems with simple applications are treated in Sec. III, which

is followed by the conclusion.
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GPB for Discrete Systemstﬁ]

Let us consider N real quantities zu, p=1...Nand 2

arbitrary functions of the vector z f(z), g(z) and define

of 3
Ef,g:[ = nUV (z) -'a—z—u—ag-v ’ (1)

where n"’ is an antisymmetric matrix and the repetition of in-

dices means summation for their values from 1 to N.

To prove that expression (1) has the main properties of a
Poisson bracket, we have to check four properties, viz. anti-

symmetry, linearity, product rule and Jacobi identity:

1) Antisymmetry is obvious [},g] = —[ﬁ,fj} (2)

2) Linearity with respect to f is easily seen

Coify + cpfys 81 = oy [Eys &l + ey[Fp, & - (2)

3) The product rule is
[£45,0 8] = [Ey» &lfy + £ [Eps &l (4)

and follows from the properties of the first derivative.

4) Jacobi identity is the non-trivial property to check and,

; Y v
as we shall see, it puts restrictions on the nu as

functions of z.

[Gal, i + L. + CeilL € = o. (5)

Using expression (1) of the GPB, we can write the left-hand side

of identity (5) in the following form:
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All the indices are dummy and some of them have been cyclically per-

muted for the purpose of the proof. We can group the terms into those

uv

containing derivatives of the n° and those without derivatives of the

v .
nu , so that we obtain

A UV A
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(0¥ ™M PH Y 2B (6)

3z 3zV azPazr "

If we exchange the indices of the second derivatives in expression
(6), the corresponding parentheses change sign owing to the anti-
symmetry of the nuv’ so that all these terms vanish identically.
We want the identity to be true for all f, g, h and we end by re-

.. . . of 3 oh ; i
quiring that every coefficient of ! .EEV 3z vanish, 1i.e.

uv Au VA
Aon v 9 an:
et a5 = O allh v D)

Jacobi's identity (5) is then equivalent to condition (7).

Relation (7) is obviously verified for constant nuv, which in-
cludes the canonical case. It can easily be checked, in general, for
small systems but is not convenient for finding the general form of

v H . .
the nl1 . As we shall see, this can be answered for the inverse matrix
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nuv if it exists. A necessary condition for the existence of

the L is that N is even. Assuming the existence of the My? we have

VA A
= § 8
L L . (8)

where 63 is the Kronecker symbol. Now multiplying relation (7)

first by Ny then by n " and then by an and using at every stage

B

relation (8) and its derivatives, we obtain

3 an
6y , —af , Mo .o (9)
z0 3zY 9z

The calculations can be reversed in a similar way to go back to

relation (7), so that relations (7) and (9) are identical.

The advantage of relation (9) is that it can be solved by

. A, " A,
Tiv = z¥ oz V ? (10)

where the Au are a general set of N functions. It is, of course,
: . v
not easy 1n practice to calculate the nu for large N because one

has to take the inverse of a large matrix.

It may be interesting to note how GPB (1) is related to non-

standard Lagrangians:

b b N .
Lo=rrae-s[r atd-v @] . (11)
a a s=1

The Euler - Lagrange equations read

N
L' /il igrom0s=ul 3 (12)

ST
r=1 s

with Mo given by relation (10). If the matrix of the M. is

non-singular, then n®" can be defined and will automatically satisfy
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relation (7) and [:f(q), g(qu = n'® -%gr -%35 is a

GPB. If we apply the matrix of the nSr to equation (12), we obtain

. N sr 3V
R I LR 1 (13)
r

Singular GPB

All that has been said until relation (7) is true even of ma-

. 1 A .
trices n J which are singular. If for such a case the rank of the ma-

J is N-m (which has to be even), then it is possible to shoerE:I
v

; 1
trix n

that a N x N matrix n' can be constructed so that

Jis

a rs . . . g .
and the matrix n' is nonsingular. This is achieved by a change of
variable which need not be simple nor is it always useful because many

properties of the original singular matrix may be lost.

A final remark concerns the Darboux theorem, which gives the possi-
bility of always finding a canonical representation locally in phase
space so that any GPB could be transformed in principle into a canonical
Poisson bracket. Again this does not need to be the best strategy for all
problems, and examples will be given later in which the GPB is much

simpler than the standard Poisson bracket.




Dirac Bracktatslzf)'—-I

For quantizing nonlinear electrodynamics and the gravitational

field, non-standard Lagrangians with the property

2 -

3. LI =0 (14)
34 347

have to be faced. Condition (14) leads to constraints for the canonical
variables p, q and necessitates generalization of the standard Hamilto-
nian dynamics. The theory with constraints is rather complicated and
can be found in Refs. [}:I and [}:I. It turns out that the Poisson bra-
ckets thus introduced are singular GPB. A detailed discussion 61 of
the primary and secondary constraints helps to find out the restricted

variables with respect to which the GPB is nonsingular.

Liouville Theorem

A canonical flow in phase space conserves the volume II d p. d q; -
1
In the case of flows of the type of eq. (13) the property holdsLZj if

i ;
the n I are constant, which can be seen as follows:

9 és ST 32V
aqs = n -—anraq = 0 (15)

the second equality being due to the antisymmetry of nsr.

sT .
If the n are not constant, the flow becomes compressible and

Id ql # ct.
i

It is, however, possible to change coordinates by the Darboux theorem
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and return to a canonical system, but the Jacobian is not easy

to obtain explicitly for large systems.

Another drawback for the case of non-constant nlJ is that the
Liouville operator is no longer Hermitian and many problems in statisti-
cal mechanics become much harder. Recent developments B concerning

non-equilibrium entropy strongly depend upon hermiticity.

Poisson's Theorem

It should be noted that the GPB of two constants of motion is also
a constant of motion. The proof makes use of the antisymmetry and the

Jacobi identity of the GPB.

ITTI GPB for Continuous Systems

The representation of the system now consists of a set of real
functions uy having differentiability and integrability properties enough
to carry through the formalism. Instead of a sum over the different real
variables we have a sum over the different functions and we have inte-
grations over the values of the functions. The observables are no longer
functions of the phase space real variables but functional of the real
functions, integrals to be more precise. If F and G are two such functionals,

then the expected GPB is

N
[F,G] =2, 7/ %E- A..g—G_'c_l__ : (16)
1’J=1 ui 1] uj
where the Aij are antisymmetric operators and Aij = Aji'

The Lie algebra properties of antisymmetry, linearity and product

rule are easy to see, but the Jacobi identity is not trivial, as we shall see.
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The reason is that we have to take the functional derivative of

[:F,G:[ to be able to construct [ (F,G], H:[ The derivative of EF,(ﬂ
involves the derivatives of nonlinear operators, especially of the
Aij with respect to their dependence upon the u'S. Let us first say

a few words about such derivatives, called Fréchet derivatives.
The Fréchet derivative[EiIN'u of a nonlinear operator N is

defined as follows:

norm (Ed'e— N(u-t-e:w)l - (N'u W)) =0 (17)
e=0

In the case of a functional F = [ f(u,ux ...) dx , which can be

considered as a nonlinear integral operator, we have

e glseid] = P& @~ (18)
de Su
€=
the functional derivative being S o tadl e gl e e (19)
Su Ju dx aux

In this case it is rather easy to isolate w inside the norm and
obtain explicitly the Fréchet derivative. Generally, the Fréchet
derivative of differential operators should be obtained by isolating
w by integrations by parts. Higher-order Fréchet derivatives can
also be constructed and the order of derivations can be exchanged.
It can thus be stated (see Ref.[P:[) that the second derivative

of a functional is a symmetric operator, which will be used exten-

sively below.

Let us now calculate the functional derivative of [F,@]

of expression (16) and start with the intermediate calculation




d ' §F ' 8§ G
e E‘,(ﬂ(uk+EW)' _f(Gu.)uw Alﬁ dﬁ
e=0 . ™ ]
SF §G ;i
M) ij(ElT.')u i
ity
¢ SE 845 (o 86 4 (20)
Su. 6§ uk Su. —
i ]

To obtain the functional derivative, we have to isolate w %nder the
8§“F

integral. This is easy for the first two terms because W and
G 3 i ; i AR
6;;6u are symmetric operators. The third term is very t diffi-

k o it
cult to treat for general operators Ai" For a specific

differential operator successive appropriate integrations by parts can
completely isolate w. We already see at this stage that the situation

is totally different from the discrete case, where the derivatives of
\V ; ;

the nu of expression (1) are straightforward. Let us assume that we

have isolated w in the third term, and that it can be written as

Bk ( §F G )

5 —E;; oD The functional derivative of [E,@I is now

§[F,G] _ 5%F A 86 5% SF
Su Guiﬁuk ij Guj Gujﬁuk ij Sgi

k SF 6G
+ Bij (15;;, Gu; (21)

If the Aij do not depend upon the u's, then Bk = 0. Using eq.(21),

ij
we can verify Jacobi identity for that case ‘:]and discover that the
symmetry of the Fréchet second derivatives and the antisymmetry of

the Aij are sufficient to satisfy Jacobi identity. This corresponds
v . ; - % 4 o o 7
to n'" = ct. in the discrete case, for which condition (7) is identi-

cally verified. If the B?j + 0, then the Jacobi identity reduces to
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CE.Gl 4 + C £, ¢ + CE.H, f -

k SF 8G SH k §H §F 8G
! Bij ( Su. ? 6u.) Akl Su. axen Bij (Su. " 6u.)Akl Su =
1 ] 1 1 ] 1
k §G SH SF _
g d Bij (Gui’ Guj) Akl GuldE =10 = (22)

Condition (22) is analogous to condition (7) with the important difference
that condition (7) is completely explicit and is identical to condition (9)
if the matrix nuv is non-singular and condition (9) can be completely
solved by relation (10). In the continuous case condition (22), which

must be fulfilled for all functiomals F, G, H, does not permit explicit
determination of the operators Aij because the functional derivatives of

F, G and H cannot be isolated under the integrals. Moreover, the analogon
of condition (9) is missing so that there is a real drawback in the con-
tinuous case. In practice one guesses a GPB and tries to verify Jacobi
identity. An explicit condition can be obtained[jil, however, if the Aij

depend linearly upon the u's.

This is now the right place to see how this formalism works when

applied to partial differential equations occuring in physics.

Example 1: Korteweg de Vries Equation

This equation is of the form

u =uu +u . (23)
t X XXX

The adequate GPB in this case£jg]is

+oc

§F o &G
E‘,é__[ __fa Su 9x 6u dx., 25
There is only one antisymmetric operator A = 2 which is independent

X
of u so that Jacobi identity is verified. Equation (23) itself can be

written in terms of the GPB of u and the Hamiltonian




H = -i 4 ax =i Sx ax (25)
as u .= E,Iﬂ (26)
(Note that u = S u(x")8(x"-x) dx' and —%{%G:ri = §(x-x")) .

The advantage of GPB (24) is essentially that it simplifies cal-
culations, and that it is written directly in the desired variable.

An interesting application is to understand the relation between the
constants of the motion of equation (23). At this point we can use
Poisson's theorem and try to derive new constants of motion from those
already known by calculating their GPB. It is well known and can

easily be checked that

2
G= J(xu+t %%—) dx (27)

is a constant of motion (stating that the centre of mass has a constant

velocity). Taking now any functional defined by
F= [ T(u, U el U, x,t) dx , (28)
we find[j?EI after integrations by parts that

_ S a1
[F,6] = s B 0x = ) e A (29)

If F is one of the constants of motion of eq. (23) with T poly-
nomial, we obtain a relation between successive constants of motion

through polynomials of different degrees:




=12 =

oT:
—_I =
= T (30)

This relation is proved with much more effort in the literature on
Korteweg de Vries equatiom.

Example 2: Two-dimensional vorticity equation and guiding centre

plasmas

The equations are

w,o=-Vo Vo, 31
Vev=0, (32)
with o = N v xv. (33)

One can express V in terms of w using eq. (32) and the Green's

function, which inverts the Laplace operator. One obtains

w, == [ w(x') M(x|x") dt. Vuw, (34)

with M= e, * v k(EJE') 3 (35)

and k is the Green's function of the Laplacian in 2 dimensions for

an infinite medium.

If we take[jﬁl as GPB

F.l = fowe £, 5 g, (36)



- Of 3g _ of 3g
where {fig) 5% 3y _ 3y ox ° (37)
[F.G[_ (8F 8G.,' , (8F &G
L Sw m{Gm > Sww - Sw ? Sw” (38)

Using eqs. (36) and (38) in Jacobi's identity leads after rather

lengthy calculations to its verification.

GPB and Lie Groups

As is to be expected, a certain number of constants of motion are
related to Lie group properties, more precisely to external Lie groups.
The GPB of these constants of motion with the dynamical variables of
the system produce the generators of the group. In the case of the Korte-

weg-de Vries equation these constants are

2
P=fL; dx, (39)
3 u2
H=I-L61 dx—f—2& dx , (40)
2
G=/(xu+t %%) dx . (41)

The constants (39), (40) and (41) correspond, respectively, to momentum,

energy and uniform velocity of the centre of mass. The GPB of P, H and
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G with u are

. . du
[Pyl-ﬂ" ax ° (42)
3
E o= -3 (43)
G af = -1+ 5 . (44)

Equations (42), (43) and (44) completely define the three generators of

the one-dimensional Galilei group.

This simple example illustrates the relation between the GPB and
the Lie algebra of the underlying group of the dynamical system. This
can help to find the right guess for the GPB. It is indeed well-known
that the generators of the Lie group verify Jacobi identity. The next
step is to establish a correspondence e between the generators and the
dynamical variables and derive the correspondence between the commuta-

tors and the GPB. This is very much exploited in, for example, Ref.[iil.

Survey

Generalized Poisson Brackets for discrete systems are not only a
chapter of classical mechanics or a pedestrian way of working with symplectic
forms[jél, they are also needed in many cases such as for non-standard
Lagrangians of Field theory in the form of Dirac brackets or when approxi-
mations within classical mechanics are done so that the problem becomes
non-standard. An important application 12 recently appeared in plasma

physics for the drift equations of a particle gyrating in a magnetic field.

Several applications for ideal fluids and fields have appeared in the

[3,14,15]

literature . Especially in plasma physics[jéj, many forms of GPB

have recently appeared for the ideal MHD equations, for guiding centre plas-
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mas and for the Vlasov-Maxwell system. The main advantage lies in the

Hamiltonian formulation of continuous systems in terms of non-canonical

laboratory variables.

Many theorems of dynamics only depend upon the Lie algebra struc-
ture of the GPB, and for some problems non-canonical variables may be
easier to handle. On the other hand, in the discrete case the inversion
of large matrices is a real problem, and in the continuum case one has
to check Jacobi identity, which can be very tedious. In this respect one
could use symbolic computation L programs which the author has not yet

seen applied for this purpose in the literature.
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